LA LEY DE OHM
LA LEY DE OHM
La ley de Ohm, postulada por el físico y matemático alemán Georg Simon Ohm, es una ley básica de los circuitos eléctricos. Establece que la diferencia de potencial que aplicamos entre los extremos de un conductor determinado es proporcional a la intensidad de la corriente que circula por el citado conductor. Ohm completó la ley introduciendo la noción de resistencia eléctrica ; que es el factor de proporcionalidad que aparece en la relación entre :
La fórmula anterior se conoce como fórmula general de la ley de Ohm,12 y en la misma, corresponde a la diferencia de potencial, a la resistencia e a la intensidad de la corriente. Las unidades de esas tres magnitudes en el sistema internacional de unidades son, respectivamente, voltios (V), ohmios (Ω) y amperios (A).
En física, el término ley de Ohm se usa para referirse a varias generalizaciones de la ley originalmente formulada por Ohm. El ejemplo más simple es:
donde J es la densidad de corriente en una localización dada en el material resistivo, E es el campo eléctrico en esa localización, y σ (sigma) es un parámetro dependiente del material llamado conductividad. Esta reformulación de la ley de Ohm se debe a Gustav Kirchhoff.3.La importancia de esta ley reside en que verifica la relación entre la diferencia de potencial en bornes de una resistencia o impedancia, en general, y la intensidad de corriente que circula a su través. Con ella se resuelven numerosos problemas eléctricos no solo de la física y de la industria sino también de la vida diaria como son los consumos o las pérdidas en las instalaciones eléctricas de las empresas y de los hogares. También introduce una nueva forma para obtener la potencia eléctrica, y para calcular la energía eléctrica utilizada en cualquier suministro eléctrico desde las centrales eléctricas a los consumidores. La ley es necesaria, por ejemplo, para determinar qué valor debe tener una resistencia a incorporar en un circuito eléctrico con el fin de que este funcione con el mejor rendimiento.
Diagrama de la ley de Ohm[editar]
En un diagrama se muestran las tres formas de relacionar las magnitudes físicas que intervienen en la ley de Ohm, , e .
La elección de la fórmula a utilizar dependerá del contexto en el que se aplique. Por ejemplo, si se trata de la curva característica I-V de un dispositivo eléctrico como un calefactor, se escribiría como: I = V/R. Si se trata de calcular la tensión V en bornes de una resistencia R por la que circula una corriente I, la aplicación de la ley sería: V= R I. También es posible calcular la resistencia R que ofrece un conductor que tiene una tensión V entre sus bornes y por el que circula una corriente I, aplicando la fórmula R = V/ I.
Una forma mnemotécnica más sencilla de recordar las relaciones entre las magnitudes que intervienen en la ley de Ohm es el llamado "triángulo de la ley de Ohm": para conocer el valor de una de estas magnitudes, se tapa la letra correspondiente en el triángulo y las dos letras que quedan indican su relación (teniendo en cuenta que las que están una al lado de otra se multiplican, y cuando quedan una encima de la otra se dividen como en un operador matemático común).
La densidad de corriente J[editar]
La densidad de corriente es un vector que lleva la dirección de la corriente y el sentido del campo eléctrico que acelera las cargas (si el material es lineal) como se explica en la Ley de Ohm en forma local.9 El vector establece, además, una relación directa entre la corriente eléctrica y la velocidad de arrastre de las partículas cargadas que la forman. Se supone que hay partículas cargadas por unidad de volumen. Se tiene en cuenta también que la es igual para todas las partículas. En estas condiciones se tiene que en un tiempo una partícula se desplazará una distancia .
Se elige un volumen elemental tomado a lo largo del conductor por donde circula la corriente y se amplía para observarlo mejor. Por ejemplo, el volumen de un cilindro es igual a . El número de partículas dentro del cilindro es . Si cada partícula posee una carga , la carga que fluye fuera del cilindro durante el tiempo es .
La corriente por unidad de área trasversal se conoce como densidad de corriente .9
La densidad de corriente, y por tanto el sentido de circulación de la corriente, lleva el signo de las cargas positivas, por ello sustituimos en la expresión anterior por y se obtiene, finalmente, lo siguiente:
La densidad de corriente se expresa como un vector cuyo sentido es el del campo eléctrico aplicado al conductor. Su expresión vectorial es:
Si por ejemplo se tratara de electrones, su carga es negativa y el sentido de su velocidad de arrastre también negativo; el resultado sería, finalmente, positivo.
Intensidad de corriente eléctrica y ley de Ohm en forma local[editar]
Las aplicaciones más generales sobre la corriente eléctrica se realizan en conductores eléctricos, siendo los metales los más básicos.10 En un metal los electrones de valencia siguen el llamado modelo de electrón libre, según el cual los electrones de valencia de un metal tienen libertad para moverse y están deslocalizados, es decir, no se pueden asociar a ningún ion de la estructura porque están continuamente moviéndose al azar, de forma similar a las moléculas de un gas. Las velocidades de los electrones dependen de la temperatura del material conductor; a la temperatura ambiente estas velocidades térmicas son elevadas, pudiendo alcanzar valores de . Ahora bien, el hecho de que se desplacen no quiere decir que haya una corriente eléctrica: el movimiento que llevan a cabo es desordenado y al azar, de forma que en conjunto el desplazamiento de unos electrones se compensa con el de otros y el resultado es que el movimiento neto de cargas es prácticamente nulo.10
Cuando se aplica un campo eléctrico a un metal los electrones modifican su movimiento aleatorio de tal manera que se arrastran lentamente en sentido opuesto al del campo eléctrico. De esta forma la velocidad total de un electrón pasa a ser la velocidad que tenía en ausencia de campo eléctrico más la provocada por el campo eléctrico. Así, la trayectoria de este electrón se vería modificada. Aparece, pues, una velocidad neta de los electrones en un sentido que recibe el nombre de velocidad de arrastre . Los valores numéricos de esta velocidad son bajos pues se encuentran en torno a los .
Si se toma como tiempo τ el tiempo promediado entre colisiones del electrón con los iones atómicos, usando la expresión de la aceleración que provoca un campo eléctrico sobre una carga, se obtiene la velocidad de arrastre . Sustituyendo en la ecuación anterior para la densidad de corriente , se llega a la ley de Ohm microscópica o en forma local.10
donde σ es la llamada conductividad eléctrica que relaciona directamente la densidad de corriente en un conductor y el campo eléctrico aplicado al mismo . En materiales lineales u óhmicos esta relación es lineal y a mayor campo eléctrico aplicado, mayor será la densidad de corriente generada, con su misma dirección y sentido ya que es una ley vectorial.
A partir de la ley de Ohm en forma local se puede obtener la ley de Ohm macroscópica, generalmente usada. Para ello se parte de un conductor metálico de sección por donde circula una corriente y se toma una longitud del mismo. Entre los dos extremos del tramo se aplica una diferencia de potencial . Por tanto, si se sustituye en la expresión anterior sucede que
.
Por definición, la relación entre la densidad J y la intensidad I de la corriente eléctrica que circula a través del conductor es y es una propiedad importante del material conductor que se llama resistencia eléctrica, que es inversamente proporcional a la conductividad del material y que representa una medida de la oposición del conductor a la conducción eléctrica.10
Ley de Ohm clásica[editar]
La ley de Ohm determina que para algunos materiales —como la mayoría de los conductores metálicos— la densidad de corriente y el campo eléctrico se relacionan a través de una constante llamada conductividad, característica de cada sustancia.11 Es decir:
Esta es la ley de Ohm en forma local, obtenida a partir de la noción del campo eléctrico que acelera a los electrones que se desplazan libremente por el metal conductor. Gracias a ella se ha obtenido la ley clásica o macroscópica:
Para los metales y casi todos los otros conductores, R es constante; esto es, no depende de la cantidad de corriente. En algunos materiales, y notablemente en los materiales semiconductores, R no es constante y este hecho es muy útil en rectificadores, amplificadoresy otros aparatos.2
Aquellos materiales cuya resistencia es constante se conocen como lineales u óhmicos, mientras que aquellos donde no es constante se los denomina no lineales o no óhmicos. En ciertos materiales no lineales, la relación o curva característica Volt-Ampere, tiene algunos tramos lineales donde puede suponerse que R es constante. Además, los elementos no lineales pueden clasificarse en simétricos y asimétricos; siendo los primeros aquellos cuyas características no dependen de los sentidos de las corrientes ni de las tensiones en sus extremos, y los segundos resultan aquellos cuyas características son diferentes para distintos sentidos de las corrientes y de las tensiones.12
Esta ley contiene menos información, al ser escalar, que la ley para la densidad de corriente (que incluye módulo, dirección y sentido por su naturaleza vectorial).
No se puede considerar la ley de Ohm como una ley fundamental de la naturaleza ya que solo la cumplen ciertos materiales por lo que se considera una relación empírica.11 Sin embargo, esta ley tiene aplicación práctica para una gran variedad de materiales, en especial los metales.
Material | Resistividad ρ a 20 °C, Ω x m | Coeficiente de temperatura α a 20 °C, K-1 |
---|---|---|
Comentarios
Publicar un comentario